博客
关于我
第一轮返工潮,哪些城市疫情传播压力最大
阅读量:448 次
发布时间:2019-03-06

本文共 649 字,大约阅读时间需要 2 分钟。

多个省份在2月10日起陆续复工,但在疫情尚未完全解除的背景下,返工潮带来的人员流动给人口迁入大省带来了病毒输入压力。利用大数据分析和防控措施,成为疫情阻击战中的关键武器。

返工潮虽然规模较往年有所减小,但仍涉及上亿人次的人口流动,人口流动带来的感染风险不容忽视。根据大数据与疫情地图对比分析,新冠肺炎确诊病例的城市分布与流动人口规模存在显著相关性。

在返工潮期间,广东省成为全国热门迁入地,迁入比例从2月7日的15%左右提高至2月9日的26.59%,远超其他省份。按城市来看,东莞市迁入比例最高,达到5.92%,其次是深圳市、广州市、上海市和北京市,迁入比例分别为5.47%、5.16%、4.93%和3.64%(数据截至2月9日)。

热门迁入城市前五名中,广东省占据了3个名额。大量人员流入对疫情防控提出了极大的压力。以上海为例,返工人员主要来自江苏南通、安徽阜阳、河南信阳等地。中泰证券研究所的报告显示,在返工潮热门城市中,深圳的压力最大,其次是东莞、上海、广州、苏州、北京、杭州、宁波、温州、佛山等城市。

浙江省在疫情防控中依托大数据,采用"大数据+网格化"方法研判疫情,提前预测疫情发展趋势,指导医疗资源调度。大数据分析出人群聚集热点分布和跨区域流动信息,为疫情防控提供了重要支持。通过数据回溯分析,及时发现疑似病患和密切接触者,有助于隔离和切断传染源。

在这场疫情阻击战中,大数据展现出显著优势,无论是追踪病例来源还是帮助疫情研判,都发挥了关键作用。未来,大数据将在疫情防控中贡献更多力量。

转载地址:http://vshyz.baihongyu.com/

你可能感兴趣的文章
mysql与mem_细说 MySQL 之 MEM_ROOT
查看>>
MySQL与Oracle的数据迁移注意事项,另附转换工具链接
查看>>
mysql丢失更新问题
查看>>
MySQL两千万数据优化&迁移
查看>>
MySql中 delimiter 详解
查看>>
MYSQL中 find_in_set() 函数用法详解
查看>>
MySQL中auto_increment有什么作用?(IT枫斗者)
查看>>
MySQL中B+Tree索引原理
查看>>
mysql中cast() 和convert()的用法讲解
查看>>
mysql中datetime与timestamp类型有什么区别
查看>>
MySQL中DQL语言的执行顺序
查看>>
mysql中floor函数的作用是什么?
查看>>
MySQL中group by 与 order by 一起使用排序问题
查看>>
mysql中having的用法
查看>>
MySQL中interactive_timeout和wait_timeout的区别
查看>>
mysql中int、bigint、smallint 和 tinyint的区别、char和varchar的区别详细介绍
查看>>
mysql中json_extract的使用方法
查看>>
mysql中json_extract的使用方法
查看>>
mysql中kill掉所有锁表的进程
查看>>
mysql中like % %模糊查询
查看>>